A Closed Formula for the Number of Convex Permutominoes

نویسندگان

  • Filippo Disanto
  • Andrea Frosini
  • Renzo Pinzani
  • Simone Rinaldi
چکیده

In this paper we determine a closed formula for the number of convex permutominoes of size n. We reach this goal by providing a recursive generation of all convex permutominoes of size n+1 from the objects of size n, according to the ECO method, and then translating this construction into a system of functional equations satisfied by the generating function of convex permutominoes. As a consequence we easily obtain also the enumeration of some classes of convex polyominoes, including stack and directed convex permutominoes. 1 Basic definitions and contents of the paper A polyomino is a finite union of elementary cells of the lattice Z×Z, whose interior is connected (see Figure 1 (a)). Polyominoes are defined up to a translation. A polyomino is said to be column convex (resp. row convex) if all its columns (resp. rows) are connected (see Figure 1 (b)). A polyomino is said to be convex, if it is both row and column convex (see Figure 1 (c)). Delest and Viennot [13] determined the number cn of convex polyominoes with semiperimeter n + 2, cn+2 = (2n + 11)4 n − 4(2n + 1) ( 2n n ) , n ≥ 0; c0 = 1, c1 = 2, (1) sequence A005436 in [18], the first few terms being: 1, 2, 7, 28, 120, 528, 2344, 10416, . . . . Università di Siena, Dipartimento di Scienze Matematiche e Informatiche, Pian dei Mantellini 44, 53100 Siena, Italy ([email protected]). Università di Firenze, Dipartimento di Sistemi e Informatica, viale Morgagni 65, 50134 Firenze, Italy ([frosini, pinzani]@dsi.unifi.it). the electronic journal of combinatorics 14 (2007), #R57 1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Number of Convex Permutominoes

Permutominoes are polyominoes defined by suitable pairs of permutations. In this paper we provide a formula to count the number of convex permutominoes of given perimeter. To this aim we define the transform of a generic pair of permutations, we characterize the transform of any pair defining a convex permutomino, and we solve the counting problem in the transformed space.

متن کامل

On the exhaustive generation of convex permutominoes

A permutomino of size n is a polyomino determined by a pair (π1, π2) of permutations of size n + 1, such that π1(i) 6= π2(i), for 1 ≤ i ≤ n+ 1. In this paper, after recalling some enumerative results about permutominoes, we give a first algorithm for the exhaustive generation of a particular class of permutominoes, the convex permutominoes, proving that its cost is proportional to the number of...

متن کامل

ar X iv : 0 71 1 . 05 82 v 1 [ m at h . C O ] 5 N ov 2 00 7 PERMUTATIONS DEFINING CONVEX PERMUTOMINOES

A permutomino of size n is a polyomino determined by particular pairs (π1, π2) of permutations of size n, such that π1(i) 6= π2(i), for 1 ≤ i ≤ n. Here we determine the combinatorial properties and, in particular, the characterization for the permutations defining convex permutominoes. Using such a characterization, these permutations can be uniquely represented in terms of the so called square...

متن کامل

On the enumeration of column-convex permutominoes

We study the enumeration of column-convex permutominoes, i.e. column-convex polyominoes defined by a pair of permutations. We provide a direct recursive construction for the column-convex permutominoes of a given size, based on the application of the ECO method and generating trees, which leads to a functional equation. Then we obtain some upper and lower bounds for the number of column-convex ...

متن کامل

Functionally closed sets and functionally convex sets in real Banach spaces

‎Let $X$ be a real normed  space, then  $C(subseteq X)$  is  functionally  convex  (briefly, $F$-convex), if  $T(C)subseteq Bbb R $ is  convex for all bounded linear transformations $Tin B(X,R)$; and $K(subseteq X)$  is  functionally   closed (briefly, $F$-closed), if  $T(K)subseteq Bbb R $ is  closed  for all bounded linear transformations $Tin B(X,R)$. We improve the    Krein-Milman theorem  ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2007